
R (and RStudio) for Econometrics

Disclaimer: The Bank of England does not accept any liability for misleading or inaccurate information or omissions
in the information provided. The subject matter reflects the views of the individual presenter and not the wider Bank
of England or its Policy Committees.

Which one?
People often ask which computer language should I use?
But we’re economists, right? So we use…. Stata? Eviews? Matlab? Gauss? Ox? C++? Fortran? Python?
Julia? (Say it quietly…. Excel?)
These are all fine, so why another? Why specifically R?
It’s up to you to decide, but for me an engaged user community is the answer. And it’s free. Free is good.

R and the R GUI
R is a scripting language designed to be suited to statistical analysis

Andrew P Blake

24 April 2023

https://twitter.com/marcusborba/status/1309609195730358272

Particularly good at handling data
Built to be a super calculator that does all the maths we need
Excellent graphical and tabular output
Multiplatform: runs on Windows, Mac, Linux and hardware as humble as the Raspberry Pi
Free to use – simply download from https://cran.r-project.org/
Supported by an extraordinary user community

https://www.r-bloggers.com/
https://stackoverflow.com/
#rstats

Most of these resources are aimed at data scientists

Learning econometrics
Typical intermediate textbooks are a good way to start, and Wooldridge (2019) leads the pack. We can use it
as a template to understand how to use R
One learning strategy is to do the example and exercises in Wooldridge (2019), which needs data

Data is available in an R package — wooldridge , see Shea (2021)
Code is explicitly in Heiss (2020) and available from the associated website

Texts covering specific using R are appearing:
Adams (2021) for microeconometrics
Cunningham (2021) for causal methods
Huntington-Klein (2022) as an elementary text for data analysis and research design that should appeal
to the budding econometrician

How to use R

https://cran.r-project.org/
https://www.r-bloggers.com/
https://stackoverflow.com/
https://twitter.com/search?q=%23rstats
https://www.urfie.net/

R is designed for data manipulation and analysis, often associated with data science rather than
econometrics
Data science skills are covered in Freeman and Ross (2019), and many of them are useful for us too
Lots of helpful books to help with these sorts of skills in R – too many to mention even a fraction

Workflow

We should approach econometric analysis in this stylized way:

Read, manipulate, clean, visualize in core/specialized packages
Do econometric analysis either:

Using appropriate libraries, either part of the core packages (lm) or from specialist packages (say
ivreg)
Or write native R code to do the analysis

Display output, graphs etc using core/specialist R routines

The first and last of these are common to any statistical/modelling analysis, the middle bit is where the
econometrician is doing something different

Basic GUI
R by itself comes with a simple but comprehensive interface:

RStudio
Most people use a more comprehensive development environment such as RStudio from posit. After you
download R, I would encourage you to download and install this as your GUI. It looks a lot like, say, Matlab.

Rstudio looks something like:

https://posit.co/products/open-source/rstudio/
https://posit.co/
https://uk.mathworks.com/products/matlab.html

Left side as shown contains R itself

Right side displays a lot of information:

Top panel, first two tabs

It is very configurable, and supports lots of languages other than R. Note by default it uses a ‘black-on-white’
text colour scheme but offers any number of variations. Choose one that suits your eyes, particularly if you
spend a lot of time in front of the screen!

Simple first example

Use R to create a matrix:

[,1] [,2]
[1,] 1 3
[2,] 2 4

A <- matrix(c(1,2,3,4), 2, 2)
A

Seems easy enough: try and figure out what the function matrix() is doing. Change the values to all 4s, say.

Econometrics is linear algebra
That’s a bit extreme, but you mostly need to do linear algebra to program up many of the estimators we use. If we
wanted to program an estimator we need to know a bit more.

Some more linear algebra

Assume the following: and are real matrices of dimension , and are real vectors, is a real
 matrix, and is a symmetric real matrix.

A B n × n b c n− X

T × k S

Maths commands essential to linear algebra

Maths R Notes

Hadamard product A * B
Element-by-element, ,
same size

Matrix/vector product , A %*% B , A %*% b Normal product rule

Inner product t(X) %*% X
Also uses transpose
operator, t()

crossprod(X)
More efficient, but less
mathy

t(A) %*% B

crossprod(A,B)

Outer product tcrossprod(A,B)

Inverse solve(A)
Matrix inverse is a special
case of…

Solve for d <- solve(A, b) …linear solution!

Cholesky decomp R <- chol(S)
 is a symmetric, positive

definite matrix

Cholesky inverse chol2inv(chol(S)) Fast!

A⨀B
A B

A × B A × b

XX ′

BA′

A × B′

A−1

d Ad = b ⇒ d = bA−1

S = RR′ S

S−1

Maths R Notes

Determinant det(A)

Diagonal

 of a matrix diag(A)
Retrieve the elements ,

 in a matrix A <- diag(b)
Set the diagonal of to ,
zero elsewhere

 Identity matrix diag(n)

Eigenvalues/vectors E <- eigen(A)
Returns a list: E$values ,
E$vectors

Programming example: Simple linear algebra
Consider the following simultaneous system of equations:

Find the values of that solve this using R.

Hint – write the problem in matrix form

|A|

aii
i = 1, . . , n

A b

In

+ 2x1 x2

− 3 + 2x1 x2 x3

−2 + 3x1 x3

= 6

= 0

= 2

x

Ax = b

where

and then use solve .

R solution

R code to create these matrices is:

The solution is:

where x is:

[,1]
[1,] 2
[2,] 2
[3,] 2

(Check it by eye!)

A = , b =
⎡

⎣
⎢

1

1

−2

2

−3

0

0

2

3

⎤

⎦
⎥

⎡

⎣
⎢

6

0

2

⎤

⎦
⎥

A <- matrix(c(1,1,-2,2,-3,0,0,2,3),3,3) # Matrices are populated by column by default
b <- matrix(c(6,0,2),3,1)

x <- solve(A,b)

Precision

Take a real matrix with and pre-multiply by its own transpose, i.e. . is then symmetric,
positive semi-definite. If , then and positive definite, and its inverse exists.

[,1] [,2]
[1,] 1.04 0.2
[2,] 0.20 1.0

Let’s invert three different ways and premultiply the answers by .

[,1] [,2]
[1,] 1.000000e+00 0
[2,] 2.775558e-17 1

[,1] [,2]
[1,] 1 5.551115e-17

Amn n ≤ m B = AA′ B

rank(A) = n rank(B) = n

B A

i1 <- solve(B)
i2 <- chol2inv(chol(B))
i3 <- qr.solve(B)

i1 %*% B

i2 %*% B

[2,] 0 1.000000e+00

[,1] [,2]
[1,] 1 -2.775558e-17
[2,] 0 1.000000e+00

We see some rounding differences. This is a fundamental characteristic of numerical linear algebra.

Programming the regression problem
Let’s look at the familiar regression problem for some generated data.

where , is a matrix of regressors including a constant and a vector of
coefficients. Let’s generate some random data of an arbitrary sized problem:

[,1] [,2] [,3]
[1,] 2.409870 0.7925486 2.749149
[2,] 1.710207 2.7867654 3.261341
[3,] 3.525394 2.9972849 1.951609

i3 %*% B

y = Xb + ϵ

ϵ ∼ N(0, .2) X (k + 1) × n b k + 1

X <- matrix(rnorm(180, 2, 1), 60, 3)
head(X, 6) # Print first six rows

[4,] 2.966957 1.8696408 2.667315
[5,] 1.538812 1.8504980 1.146760
[6,] 1.640619 3.4909867 1.411701

[,1] [,2] [,3] [,4]
[55,] 1 2.2649989 2.6552562 0.8168622
[56,] 1 0.2889892 0.2898367 2.2295481
[57,] 1 2.5199898 2.6010970 3.7696509
[58,] 1 1.2229275 1.0048883 2.0531373
[59,] 1 1.0409328 2.0610489 2.4206702
[60,] 1 2.3584212 0.9789181 1.4413930

Now create a dependent variable that is a linear combination of these variables plus some noise. Create the linear
relationship first so we know what it is:

and then the dependent variable:

X <- cbind(1, X) # Add a constant
tail(X,6) # Print last six rows

b <- matrix(c(0.5,1,-1,.2), 4, 1)

y <- X %*% b + 0.2*rnorm(60)

We could now do a regression - i.e. calculate

which can be written:

which gives

[,1]
[1,] 0.5376433
[2,] 0.9776018
[3,] -0.9828396
[4,] 0.1816978

But I wouldn’t do it like this (we’ll see why in a minute). A better way would be

or even

which both evaluate to the same values.

= (X yb̂ X ′)−1X ′

bhat <- solve(t(X)%*%X)%*%t(X)%*%y

bhat2 <- chol2inv(chol(crossprod(X)))%*%crossprod(X,y)

bhat3 <- qr.solve(X,y)

b̂

Testing timings

Why does it matter how you do things? It should be obvious that it might, but it turns out some fairly trivial things
can make a lot of difference. We set some parameters so we can create a bigger problem.

We will use seven different methods to calculate an estimate of . These are two variations on the three
calculations below (where the brackets matter!):

where we do it either ‘by hand’ or using crossprod , plus using qr.solve .

The timings for these different methods are:

b

= ((X) yb̂1 X
′)−1 X

′

= ((X)(y)b̂2 X ′)−1 X ′

= ((X (y))b̂3 X ′)−1 X ′

Using lm instead
Instead of all this we could use the built in regression command lm

library(tidyverse)
data <- as_tibble(cbind(y0, X0)) %>%
 rename_all(~ c("y", "c", "X1", "X2", "X3"))

Call:
lm(formula = y ~ X1 + X2 + X3, data = data)

Residuals:
Min 1Q Median 3Q Max
-0.35502 -0.10460 -0.00169 0.09132 0.30085

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.53764 0.07489 7.179 1.75e-09 ***
X1 0.97760 0.01992 49.087 < 2e-16 ***
X2 -0.98284 0.01764 -55.711 < 2e-16 ***
X3 0.18170 0.02403 7.561 4.09e-10 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1612 on 56 degrees of freedom
Multiple R-squared: 0.9886, Adjusted R-squared: 0.988
F-statistic: 1617 on 3 and 56 DF, p-value: < 2.2e-16

This does all the work for us, but if the estimator doesn’t exist, you need to do it yourself!
Notice I load the tidyverse
We need to understand every part of this

reg1 <- lm(y ~ X1 + X2 + X3, data = data)
summary(reg1)

tidyverse

Essentially two ways to use R: with the tidyverse or without it. I leave it to you to decide, because although
opinion is split, sometimes people have practical rather than purist responses:

This is a collection of libraries that all work together to (amongst othere things) manipulate and plot data. For a
description see Wickham et al. (2019).

I use elements of the tidyverse throughout any code I write: in particular I often use commands from the
following libraries for data wrangling and plotting:

dplyr
select – retain/drop columns

http://www.tidyverse.org/

filter – conditionally choose rows
slice – retain/drop rows by position
mutate – create a new variable
rename – rename an old variable

tidyr
pivot_longer – make wide data long
pivot_wider – make long data wide

broom
tidy – the Ronseal of the tidyverse

lubridate
year – this returns the year from a date

magrittr
%>% – a pipe operator that chains together commands to make manipulating data more understandable
and easier to program

ggplot2
ggplot – initiate a graph
geom_line – draw a line etc.

For the latter Wickham (2016) is the main reference, but learning by doing is the only way.

References
Adams, Christopher P. 2021. Learning Microeconometrics with R. The R Series. Oxford: CRC Press.
Cunningham, Scott. 2021. Causal Inference: The Mixtape. New Haven & London: Yale University Press.

https://mixtape.scunning.com/.
Freeman, Michael, and Joel Ross. 2019. Programming Skills for Data Science: Start Writing Code to Wrangle,

Analyze, and Visualize Data with R. Addison-Wesley Data and Analytics Series. New York: Pearson

https://mixtape.scunning.com/

Education Inc.
Heiss, Florian. 2020. Using R for Introductory Econometrics. 2nd ed. CreateSpace. www.URfIE.net.
Huntington-Klein, Nick. 2022. The Effect: An Introduction to Research Design and Causality. Routledge.

https://www.theeffectbook.net/.
Shea, Justin M. 2021. wooldridge: 115 Data Sets from "Introductory Econometrics: A Modern Approach, 7e" by

Jeffrey m. Wooldridge. https://CRAN.R-project.org/package=wooldridge.
Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

https://ggplot2.tidyverse.org.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François,

Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686.
https://doi.org/10.21105/joss.01686.

Wooldridge, Jeffrey. 2019. Introductory Econometrics: A Modern Approach. 7th ed. South-Western College
Publishing.

Appendix

Some programming basics

A few not-linear-algebra commonly used commands used are summarized in the following table:

R Example Notes

Assign a value <- a <- 4
Also legal is a = 4 .
But I hate it.

Create a list of
values

c(.) v <- c(1, -2, 22) Defining ‘on the fly’

https://www.urfie.net/
https://www.theeffectbook.net/
https://cran.r-project.org/package=wooldridge
https://ggplot2.tidyverse.org/
https://doi.org/10.21105/joss.01686

R Example Notes

Sequence seq(i, k, l) , , … , Create a sequence

i:k , , … ,
Short cut for unit
in/de-crements

Loop commands for (var in seq) expr for (i in 5:1) print(i)
Loops. We need
loops.

Draw a random
number

rnorm(k,a,b) rnorm(60, 0, 5)
Example draws 60
values ~

Create a matrix matrix(v,i,j) matrix(5, 2, 2)
Create a matrix
of 5s

Functions

Everything in R is a function (although it doesn’t look like it). Defining a function is simple:

Here’s one that actually does something:

5 7 21

i i ± 1 k

N(0, 5)

2 × 2

name_of_function <- function(function_arguments){
 # Body of function where stuff is done
}

threetimesadd <- function(x,y){
 z <- 3*(x+y)

and if we run it:

[1] 30

 return(z)
}

threetimesadd(4,6)

